Помню, в 90-х в брошюре для поступающих на Физтех, который М(ФТИ), были примерно такие слова:
"Наши выпускники очень востребованы заграницей или успешны в бизнесе. Ведь очевидно же, что человек, сдававший диффуры и тензорный анализ всегда обхитрит и переиграет человека, сдававшего политэкономию и бухучёт."
Благодарю вас за курс лекций. Отдельное спасибо Дмитрию Юрьевичу за продвижение науки в массы за свой счет. Математика – это как музыка по своей гармонии, а рассказ физика про математику – это как игра на музыкальном инстременте, отличном от того, который подразумевал композитор. Вряд ли у гуманитариев получится понять, так как для этого нужно прорешать тысячи примеров по каждой теме.
Здравствуйте, Александр Сергеевич.
Поскольку я иногда в частном порядке преподаю физику школьникам, всегда с интересом смотрю ваши видео с точки зрения методологии преподавания физики и после просмотра последних двух роликов на этом канале, у меня возникло несколько вопросов, именно с точки зрения методологии:
1)Почему при определении операций вычитания и деления вы не стали их вводить, так как это вводиться в алгебре:
[Определения нуля] Существует единственное число «0» такое, что для любого числа а: а+0=а.
[Определение чисел обратных относительно сложения] Для любого числа а существует и единственно число «-а» такое, что: а+(-а)=0.
[Определение вычитания]: а-b≡a+(-b).
[Определение единицы] Существует единственное число «1» такое, что для любого числа а (за исключением особенного числа «0»): а*1=а.
[Определение чисел обратных относительно умножения] Для любого числа а (за исключением особенного числа «0») существует и единственно число «1/а» такое, что: а*(1/а)=1.
[Определение деления]: а:b≡a*1/b.
По-моему, даже для «физической математики» такой формализм не слишком сложен, зато, например, сразу дает ответ на вопрос «А почему на ноль делить нельзя?» - «Потому что данная операция не определена»
2)Почему когда вы рассказывали о возведении степень, из того факта что а^b≠b^a, вы не сделали акцентированный вывод, что для данной операции необходимы две обратных операции:
Первая – извлечение корня, позволяет решать уравнения типа x^a=b.
Вторая – взятие логарифма, позволяет решать уравнения типа a^x=b.
А ведь в физике без логарифма никуда. Тут опять же, можно было сказать много слов на тему «Почему логарифмы так сложны для восприятия школьника?» - «Потому что в школе сначала несколько лет учат решать уравнения с радикалами, а только потом говорят, что вообще-то можно еще и логарифмы брать».
3)Почему вы сначала стали говорить о функциях, а только потом о комплексных числах? По-моему, чуть более логичнее сначала описать именно все числа и сказать, что теперь для любой алгебраической операции мы можем произвести обратную, а только затем ввести тригонометрические операции и сказать, что в комплексных числах тоже всегда возможна обратная операция.
4)Почему вы здесь не стали рассматривать представление комплексных чисел, через модуль (амплитуду) и аргумент (фазу)? Ведь для описания любого периодического процесса, представление физических величин в виде абстрактной комплексной величины именно в таком представлении многократно упрощает операции с ними.
Повторюсь, вопросы именно по тому, как доступнее для учащегося излагать материал. И, если ответ будет «Опыт показывает, что так лучше!» )))) приведите, пожалуйста, пример опыта.
Вообще-то, если сомневаешься в правильности написания, существуют проверочные слова. Применив которые можно написать без ошибок. Не хочу никого задеть (всё забывается со временем), но этому учат ещё в школе, кстати. Или на худой конец на каком-нибудь ресурсе проверить можно, на том же "грамота.ру" и просто запомнить.
И просто иногда листать словарь. Да и вообще читать книги: многие вопросы в написании слов отпадут сами собой. :)
P.S. На сколько мне известно слово "доктор" является словарным и написание данного слова нужно просто запомнить как и написание других словарных слов.
Бац минус цаб доказывается в две строчки с помощью формализма антисимметричного тензора эпсилон. Не смотря на мудрёные слова легко объясняется школьнику. Реально в 2 строчки.
Большое спасибо за чрезвычайно понятный стиль изложения материала. Небольшое замечание - не введена метрика для пространства векторов на комплексной плоскости в явном виде. Хотя это мелочь.
А вот давай не будешь обобщать! Могу тебя тоже в библиотеку им. Ленина направить почитать книг со словами "Откроешь для себя много интересного"! Если хочешь сказать что я тут ошибаюсь - приведи аргументы, напиши по существу в чём не прав. (см. сообщение #14)
Правильно писать "векторЫ". Раз ссылаешься на орфоэпические словари - держи: в "Орфоэпическом словаре русского языка Аванесова", например, множественное число слова "вектор" указано с окончанием "-ы". Вот и открывай много интересного. :) Я не гуглил. У меня на книжной полке такой словарь, т.е взял, открыл, посмотрел. С уважением.
Хотелось бы вынести на обсуждение вопрос о необходимости краткого обзора по теории вероятности, про это вскользь уже говорилось когда рассказывали про идеальный газ. Мне кажется что для полноты картины необходимо в справочном формате основные понятия теорвера объяснить.
Кстати, хороший пример гиперкомплексных чисел это кватернионы. Кватернион это число вида q = a + ib +jc + kd, где i^2=j^2=k^2=ijk=-1. Кватернион очень удобен для операций с вращениями трехмерного пространства много используется в робототехнике и компьютерном моделировании.
Да как Вам сказать, математики вот утверждают, что все "доказательства" формул Эйлера - это псевдо доказательства. А эти формулы, скорее, определения. А я ограничился упоминанием, что такие формулы есть....
Уважаемый Георгий!
Вы абсолютно правильно говорите о том, как следует рассказывать математику, но в данном случае ставилась совсем другая задача. Я вообще не собирался рассказывать математику. Просто в физике, когда требовалась какая-то математическая идея, я ее вводил "на пальцах" в том месте, где она требовалась. Но тут неожиданно организаторы эти "бесед" начали приставать ко мне с тем, чтобы собрать вместе все "лирические отступления по математике" для удобства слушателей. При этом - за 1 лекцию, длиной не многим более часа.Мне эта идея категорически не понравилась. Но в час я не уложился, получилось (на мой взгляд) очень скучно и т.д.
Что касается моего мнения о том, как излагать математику для будущих физиков, оно состоит в следующем:СУЩЕСТВУЕТ КУРС ВЫСШЕЙ МАТЕМАТИКИ СМИРНОВА. На сегодняшний день он если и не идеален, то близок к идеалу :)